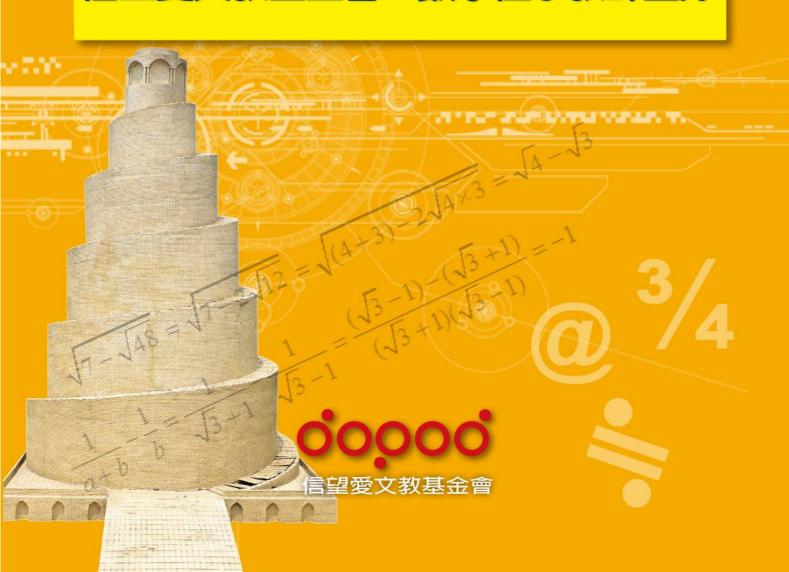


平面向量的表示法

信望愛文教基金會·數學種子教師團隊

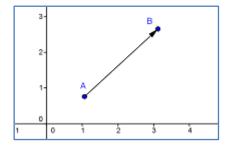


平面向量的表示法

有向線段(向量的幾何表示法)

假設只給定線段的兩端點為A及B時,這個線段可以表示為 \overline{AB} 或是 \overline{BA} ,如果我們除了線段長度之外還想要強調其方向性,就會在線段的符號再加上箭頭表示為 \overline{AB} 或是 \overline{BA} 。其中 \overline{AB} 表示A為始點、B為終點,如下圖所示:

有向線段 \overline{AB} 的長度及為線段 \overline{AB} 的長度即 $|\overline{AB}|=\overline{AB}$



向量的相等

 $\overrightarrow{AB} = \overrightarrow{CD} \Leftrightarrow |\overrightarrow{AB}| = |\overrightarrow{CD}|$,且 \overrightarrow{AB} 與 \overrightarrow{CD} 方向相同

向量的座標表示法

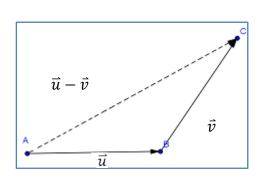
設 O 為原點,我們將 \overrightarrow{AB} 的始點 A 移至與 O 點重合,這時終點 B 的座標 (a,b) 可以拿來表示 \overrightarrow{AB} ,記為 $\overrightarrow{AB}=(a,b)$,且 $|\overrightarrow{AB}|=\sqrt{a^2+b^2}$

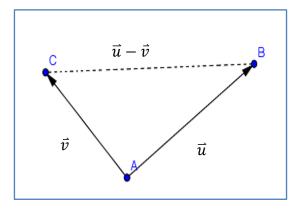
註:設 $\overrightarrow{AB}=(a,b)$, $\overrightarrow{CD}=(c,d)$ 則 $\overrightarrow{AB}=\overrightarrow{CD}\Leftrightarrow a=c$,b=d

2

向量的加減法與係數乘法

向量加法: $\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}$ 。 $令\overrightarrow{AB}=\overrightarrow{u}$, $\overrightarrow{BC}=\overrightarrow{v}$ (如下方左圖) 向量減法: $\overrightarrow{AB}-\overrightarrow{BC}=\overrightarrow{CB}$ 。 $令\overrightarrow{AB}=\overrightarrow{u}$, $\overrightarrow{BC}=\overrightarrow{v}$ (如下方右圖)





向量的係數乘法

對於任意向量 \vec{u} , $r \in R$, 則 $r \cdot \vec{u}$ 的定義如下:

若r>0,則 $r \cdot \vec{u}$ 為一方向與 \vec{u} 相同,長度為 \vec{u} 的r倍之向量

若r<0,則 $r\cdot \vec{u}$ 為一方向與 \vec{u} 相反,長度為 \vec{u} 的|r|倍之向量

係數乘法推廣

1.若 $A \cdot B \cdot C$ 為平面上相異三點,則 $A \cdot B \cdot C$ 三點共線 ⇔ 存在一個非零實數 r 使得 $\overline{AB} = r\overline{AB}$

2.對於任意兩非零向量 \overrightarrow{AB} 和 \overrightarrow{CD} ,且三點不共線,則 \overrightarrow{AB} // \overrightarrow{CD} \Leftrightarrow 存在一個非零實數 r 使得 $\overrightarrow{AB} = r\overrightarrow{AB}$

3.設 \overline{AB} 、 \overline{CD} 不平行,則任何位於 \overline{AB} 與 \overline{CD} 決定的平面上的向量 \overline{u} 一定可以 \overline{AB} 及 \overline{CD} 的線性組 合表示之 $\Rightarrow \vec{u} = \alpha \overrightarrow{AB} + \beta \overrightarrow{CD}$

向量的加法、減法,係數乘法以坐標表示

意式 \vec{u} = (a_1, b_1) \vec{v} = (a_2, b_2) $r \in R$

- (1) $\vec{u} + \vec{v} = (a_1 + a_2, b_1 + b_2)$ (2) $\vec{u} \vec{v} = (a_1 a_2, b_1 b_2)$
- (3) $r \cdot \vec{u} = (ra_1, rb_1)$ (4) 若 $\vec{u}//\vec{v}$,且 $b_1b_2 \neq 0$,則 $\frac{a_1}{b_1} = \frac{a_2}{b_2}$

分點公式

設P點為 \overline{AB} 上任一點使得 \overline{PA} : \overline{PB} =m:n,則位於平面上任意一點O

$$\overrightarrow{OP} = \frac{n}{m+n} \overrightarrow{OA} + \frac{m}{m+n} \overrightarrow{OB}$$

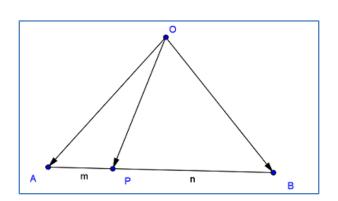
Proof

$$\overrightarrow{OP} = \overrightarrow{OA} = \overrightarrow{AP} + \frac{m}{m+n} \overrightarrow{AB}$$

$$= \overrightarrow{OA} + \frac{m}{m+n} (\overrightarrow{OB} - \overrightarrow{OA})$$

$$= (1 - \frac{m}{m+n}) \overrightarrow{OA} + \frac{m}{m+n} \overrightarrow{OB}$$

$$= \frac{n}{m+n} \overrightarrow{OA} + \frac{m}{m+n} \overrightarrow{OB}$$



分點坐標公式

坐標平面上兩點坐標 $A(a_1,b_1)$, $B(a_2,b_2)$,P為 \overline{AB} 上任一點,若 \overline{AP} : $\overline{BP}=m:n$,

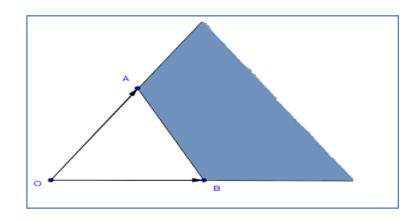
則P 點坐標為($\frac{na_1+ma_2}{m+n}$, $\frac{nb_1+mb_2}{m+n}$)

三點共線判別法

1.若 $A \cdot B \cdot C$ 為平面上相異三點,則 $A \cdot B \cdot C$ 三點共線 \Leftrightarrow 存在一個非零實數 r 使得 $\overline{AB} = r\overline{AB}$ 2.設 O 為坐標平面上任意一點, $A \cdot B \cdot P$ 三點共線 \Leftrightarrow 存在兩實數 $\alpha \cdot \beta$,使得 $\overline{OP} = \alpha \overline{OA} + \beta \overline{OB}$,且 $\alpha + \beta = 1$

推廣

設 $\overrightarrow{OP} = \alpha \overrightarrow{OA} + \beta \overrightarrow{OB}$,且 α , $\beta > 0$,則 $1.\alpha + \beta < 1$,則 P 點落在 ΔOAB 之內部 $2.\alpha + \beta = 1$,則 P 點落在 \overline{AB} 上 $3.\alpha + \beta > 1$,則P點落在 \overline{AB} 外之陰影區



小試身手

例題

設 \vec{a} =(2x+3y,x-2y+1) \vec{b} =(x+y-2,3x+y-1) ,若 \vec{a} = \vec{b} ,則數對(x,y)=

1

例 題

2

已知 ABC 為不共線 3 點,若 $3x\overline{AB}+(y+3)\overline{BC}+(4x-5)$ $\overline{CA}=\overline{0}$ 其中 $x,y\in R$ 求數對(x,y)

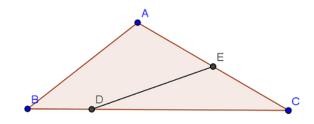
例

題

3

如右圖所示,D 在 $\triangle ABC$ 之邊 BC ,且 $CD = 2\overline{BD}$

 $E \stackrel{.}{AC}$ 之中點,若將 \overrightarrow{ED} 改寫為 $\overrightarrow{ED} = r\overrightarrow{AB} + s\overrightarrow{AC}$ 其中 r, s 皆為實數,則 r+s=?



例題

在坐標平面上的 $\triangle ABC$ 中,P 為 \overline{BC} 之中點,Q 在 \overline{AC} 上且 \overline{AQ} = $2\overline{QC}$

已知 \overrightarrow{PA} =(4,3), \overrightarrow{PQ} =(1,5),則 \overrightarrow{BC} =?

例

題

4

設 I 為 ΔABC 的內心,若 $2\overline{IA}+3\overline{IB}+4\overline{IC}=\overline{0}$ 且 ΔABC 周長為 18,則 ΔABC 之面積為?

5

例

6

題

 ΔABC 中,A(1,2) B(4,2) C(1,-2) 且頂點 $\angle A$ 的內角平分線交 \overline{BC} 於 D,則 D 點坐標為何?

解答與解析

例題 $1: \vec{a} = \vec{b}$, 2x+3y=x+y-2 且 x-2y+1=3x+y-1

⇒
$$\begin{cases} x + 2y = -2 \\ 2x - 3y = 2 \end{cases}$$
 解得 $x=10,y=-6$

數對(x,y)=(10,6)

例題 2:
$$3x\overrightarrow{AB} + (y+3)(\overrightarrow{AC} - \overrightarrow{AB}) - (4x-5)\overrightarrow{AC} = \overrightarrow{0}$$

$$(3x-y-3) \overrightarrow{AB} + (-4x+y+8) \overrightarrow{AC} = \overrightarrow{0}$$

$$3x-y-3=0$$
, $-4x+y+8=0$

例題 3: $\overrightarrow{ED} = \overrightarrow{EA} + \overrightarrow{AD}$

$$= -\frac{1}{2}\overrightarrow{AC} + \left(\frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AB}\right)$$

$$=\frac{2}{3}\overrightarrow{AB} - \frac{1}{6}\overrightarrow{AC}$$

$$r+s=\frac{2}{3}-\frac{1}{6}=\frac{1}{2}$$

例題 4: $\overrightarrow{BC}=2\overrightarrow{PC}$

在
$$\triangle APC$$
 中,由分點公式可得 $\overrightarrow{PQ} = \frac{2}{3}\overrightarrow{PC} + \frac{1}{3}\overrightarrow{PA}$

$$\Rightarrow 2\overrightarrow{PC} + \overrightarrow{PA} = 3\overrightarrow{PO}$$

$$\Rightarrow 2\overrightarrow{PC} = 3\overrightarrow{PQ} - \overrightarrow{PA} = 3(1,5) - (4,3) = (-1,12)$$

例題 $5: 2\overrightarrow{IA} + 3\overrightarrow{IB} + 4\overrightarrow{IC} = \overrightarrow{0}$

$$\triangle BIC : \triangle AIC : \triangle AIB = 2 : 3 : 4 = a : b : c$$

$$a = 4$$
, $b = 6$, $c = 8$

利用海龍公式可知
$$\triangle ABC$$
 面積= $\sqrt{s(s-a)(s-b)(s-c)} = \sqrt{9 \times 5 \times 3 \times 1} = 3\sqrt{15}$

例題 6: \overline{AB} =3

$$\overline{BC} = \sqrt{(4-1)^2 + (2+2)^2} = 5$$

$$\overline{AC}=4$$

$$\because \frac{\overline{BD}}{\overline{CD}} = \frac{\overline{AB}}{\overline{AC}} = \frac{3}{4}$$

二利用分點公式可知
$$D$$
 點坐標為 $(\frac{3\times 1+4\times 4}{3+4},\frac{3\times (-2)+4\times 2}{3+4})=(\frac{19}{7},\frac{2}{7})$